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Abstract: The National Weather Service is responsible for alerting wildland fire management of
meteorological conditions that create an environment conducive for extreme fire behavior. This
is communicated via Red Flag Warnings (RFWs), which presently lack a national standardized
methodology and rarely are explicitly linked to fuel conditions such those as provided by National
Fire-Danger Rating System (NFDRS) indicators. The need for a revamped RFW has been expressed
recently by both fire management and fire weather meteorologists. A decision matrix approach
was developed to determine criteria that consistently and explicitly associates meteorological and
fuels information to extreme fire behavior. Extreme fire behavior is defined here as maximum rates
of spread (area per day) observed on documented large fires from 1999–2014 utilizing the ICS209
all-hazard dataset. Meteorological conditions occurring with these rates of spread were compared to
historical percentiles of relative humidity, wind speed, and the NFDRS Energy Release Component.
These percentiles were assigned a numerical score from one through five based on percentile rank.
The additive result of all three scores was plotted against rates of spread yielding a two-step decision
matrix of RFW categories where, for example, the highest score is the most extreme RFW case. Actual
RFW issuances were compared to this matrix method.

Keywords: Red Flag Warning; extreme fire behavior; National Fire-Danger Rating System; fire weather

1. Introduction

Wildfire is both a natural and anthropogenic impact on the landscape that presents
an increasing hazard to society [1]. The increasing presence and severity of wildfire [2–4]
will demand more accurate prediction methods, better community preparedness, and the
increased use of early warning systems to mitigate the negative impacts of increasing
burned area [5], seasonal duration [6], and more extreme fire behavior. In the United
States, National Oceanic and Atmospheric Administration (NOAA) National Weather
Service (NWS) meteorologists issue Fire Weather Watches (FWWs) and Red Flag Warnings
(RFWs) to alert land managers when a “combination of fuel and weather conditions support
extreme fire danger and/or fire behavior” [7] (p. 6). FWWs are generally issued up to 72 h
in advance of forecasted conditions, while RFWs are issued within 48 h. Meteorological
criteria for RFWs are selected by each weather forecast office (WFO) and documented in an
interagency Annual Operating Plan [7]. RFWs are issued for a particular fire weather zone
(FWZ) and are commonly based on predetermined thresholds of wind speed and relative
humidity. RFWs are also required to incorporate fuels information, making them one of the
few products issued by the NWS that utilize external non-NWS derived information [8].
Despite this requirement, explicit fuels information is not consistently used at all WFOs.

RFWs are used operationally by fire managers for planning and safety purposes [7].
Resource allocation and staffing decisions are common planning actions that may be based
in part on a RFW as outlined in an agency fire danger operating plan (e.g., https://gacc.nifc.
gov/nwcc/districts/CCCC/nfdrs2016/docs/WW_FDOP_final_draft_v20200428.pdf ac-
cessed on 18 March 2023). Essential safety components of operational firefighting tactics,
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training, and practices involve the awareness or avoidance of extreme fire behavior [9].
Since RFWs are intended to alert fire managers of the potential for extreme fire behavior,
they are an essential safety tool. It has previously been hypothesized that RFWs may have
a measurable effect on firefighter situational awareness, potentially affecting the outcome
of suppression efforts [10].

Very little research exists on the verification of FWWs and RFWs. Recent work pub-
lished by Clark [10] demonstrated the skill of RFWs as forecasts of large fire occurrences,
making several recommendations including the adoption of a standardized method of
incorporating fuel dryness, centrally documented and explicit criteria, and the addition of
probabilistic information. Several issues with RFWs have previously been identified [11]:
current criteria are subjectively determined and are not scientifically linked to extreme fire
behavior, fuels information is inconsistently incorporated, and the current warning struc-
ture limits a forecaster’s ability to communicate uncertainty or relative severity. During a
preliminary investigation done at the Desert Research Institute, at least 524 unique criteria
were discovered from 40 separate Annual Operating Plans across the country [12], clearly
demonstrating the need for a standardized methodology. The aim of the present research
is to propose a national standardized methodology utilizing commonly observed mete-
orological elements of relative humidity and wind speed and incorporating an indicator
of fuel dryness. By attempting to align the criteria with documented incidents of extreme
fire behavior, RFWs will more effectively communicate information to fire managers, and
subsequently improve planning and resource allocation, and increase firefighter and public
safety as intended.

Scientifically, there is currently no formally accepted definition of extreme fire behav-
ior [13]. The National Wildfire Coordinating Group (NWCG) defines extreme fire behavior
as “a level of fire behavior characteristics that ordinarily precludes methods of direct
control action . . . Predictability is difficult because such fires often exercise some degree
of influence on their environment and behave erratically, sometimes dangerously” [14].
The preclusion of direct control action may result from several context-dependent and
interrelated factors, summarized here by Tedim as the “interplay among macro processes
(e.g., atmosphere and fire interaction) and local processes and conditions (e.g., poor initial
attack, inadequate risk perception, very strong and variable winds, rough topography, low
fuel moisture content, fuel load, fuel continuity, landscape connectivity, poor preparedness,
and vulnerable communities)”, [13] (p. 20).

Due to this complexity, fire behavior is commonly correlated exclusively to atmo-
spheric processes. These correlations have been demonstrated using components from
the US National Fire Danger Rating System (NFDRS), as well as other meteorological
information [15–20]. Besides operational NFDRS there are other fire danger indicators that
incorporate NFDRS elements [19,21] and others have been proposed that focus strictly on
atmospheric conditions [22,23].

The documented instances of extreme fire behavior used in this project are taken
from the ICS-209 all-hazard dataset, mined from the United States National Incident
Management System [24], which consists of all large wildfire incidents in the United States
from 1999–2014 recorded with an ICS-209 form [25]. By choosing this dataset, we are
effectively controlling for incidents that exceeded initial attack capabilities, often implying
some form of problematic fire behavior. Although these incidents may not have explicitly
‘precluded direct control action’ [14], it is highly likely that atmospheric conditions allowed
for rapid initial spread. Only 1–2% of all wildfires in the US become large incidents, though
these incidents account for over 95% of annual area burned [26].

Here, we examined the meteorological and environmental conditions surrounding
documented occurrences of high rates of spread using relative humidity (RH), wind speed,
and energy release component (ERC; an indicator of fuel dryness and total heat release
per unit area within the flaming front at the head of a moving fire), parameters previously
demonstrated to correlate to increased fire behavior [16,27,28]. Lindley [29,30] also shows
a correlation between ERC and various measures of extreme fire behavior. Nomograms
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depicting increases in rate of spread and flame length with corresponding increases of
fire intensity and decreases in dead fuel moisture directly relate ERC and RH to fire
behavior [31]. Wind is a variable in the original rate of spread equation proposed by
Rothermel [32]. ERC, RH, and wind speed are used as inputs in the fire behavior model
currently generating NFDRS fire danger ratings (Figure 1).
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Figure 1. Inputs for the NFDRS fire behavior model. Note the presence of RH, live and dead
fuel moistures (ERC; RH), and wind speed. With the exception of temperature, all other variables
included in the NFDRS model are either site-specific or time related. Adapted from How to Predict
the Spread and Intensity of Forest and Range Fires (INT-143) [33] (p. 2), Intermountain Forest and
Range Experiment Station: Ogden, UT: USDA Forest Service. Retrieved from https://www.fs.fed.us/
rm/pubs_int/int_gtr143 accessed 18 March 2023. In the public domain.

It is relevant to incorporate ERC along with existing criteria of wind speed and RH
for several reasons: current RFW criteria inconsistently and non-uniformly incorporate
fuel dryness, ERC can be normalized relative to a local climatology and correlate fuels
information exclusively to meteorological conditions [19], and fire danger indices are
operationally understood by fire management, the intended audience of RFWs [34]. By
formulating RFW criteria using historical percentiles of these parameters we capture
the dominant meteorological influences on fire behavior and directly relate RFWs to the
potential for extreme fire behavior.

The goal of our work is to quantify the relationship between meteorological conditions
and extreme fire behavior, offering a national standardized methodology for incorporation
into operational fire weather forecasting. Better aligning weather and fuels with fire
behavior will allow fire managers to be better informed of the likelihood and severity of
a forecasted fire weather event with potential implications for firefighter safety and fire
suppression resource management. A well-defined early-warning system with relevant
communication messaging has the potential to increase occupational safety [35], better
warn fire-threatened communities [36], and allow for more accurate tactical planning [37].

2. Materials and Methods
2.1. Fire Behavior and Gridded Meteorological Datasets

To analyze occurrences of extreme fire behavior, a database of documented large fires
occurring in the United States from 1999–2014 containing the daily maximum rate of spread
corresponding to each incident was acquired [24]. A large fire is defined here as anything
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exceeding 100 acres (247 hectares) in a timber fuel type and 300 acres (741 hectares) in grass
or brush fuel types. These maximum rates of spread were originally listed as area (acres)
of growth per day with the calendar date at which the maximum occurred, documenting
the most active fire behavior occurrence for each incident. Maximum rates of spread,
dates of occurrence, and geographic locations were collected from twenty states in diverse
geographic regions (see Table 1). By only examining definitively large fires, we effectively
controlled for increased or above average fire behavior as an incident must escape initial
attack and progress to certain acreage requirements to qualify for the database [24].

Table 1. Data sampled by state, including ICS209 incidents exceeding breakpoint rates of spread,
total 2020 RFWs issued, and total 2020 RFWs corresponding to a FWZ with a RAWS station or a
previous large fire occurrence.

State ICS209 Qualifying Incidents ROS Threshold (Hectares) 2020 Total RFWs Issued 2020 RFWs Sampled

Alabama 16 1255 4 4

Arkansas 21 1517 5 5

Arizona 27 21,745 149 149

California 64 21,498 643 566

Colorado 28 14,826 1143 603

Florida 100 5090 126 76

Idaho 49 32,297 138 138

Kentucky 11 2224 10 10

Minnesota 12 13,220 185 42

Missouri 10 1633 434 114

Montana 38 27,676 327 327

N. Carolina 14 3212 108 75

Nebraska 7 25,328 75 75

Nevada 44 42,626 315 267

Oklahoma 106 4942 199 117

Oregon 24 49,564 176 176

Texas 41 39,537 668 418

Utah 40 20,235 397 374

Virginia 11 2595 9 6

Washington 21 28,714 84 80

Totals 684 Avg. 17,987 5195 3622

RFWs and FWWs are exclusively intended for conditions conducive to extreme fire
behavior. Consequently, the focus of this analysis was to categorically demonstrate the
severity of the most destructive large fires using a matrix methodology still applicable
in daily operational forecasting. Maximum rates of spread were separated by state and
graphed in ascending order, yielding the relationships demonstrated in Figure 2. Here,
we further excluded all but the most extreme examples of fire behavior by selecting only
those incidents occurring on the right side of a breakpoint, plotted to signify the point at
which rates of spread start rapidly increasing. These breakpoints were obtained using an
analytical method developed in Python specifically designed to find the knee or elbow
of curves by calculating the slope of a line drawn from the minimum to maximum value,
rotating the data so that the slope of this line is zero, and then finding the minimum value
of the rotated data, corresponding the inflection point of the curve [38].
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Figure 2. Daily maximum spread rate for incidents occurring in AZ, CA, CO, FL, MN, MT, NC, OK,
and OR, 1999–2014, plotted in ascending order. ROS breakpoint is graphically demonstrated by the
vertical dashed line. Incidents retrained for analysis are plotted to the right of the breakpoint while
excluded incidents are plotted to the left.

To compile meteorological conditions corresponding to each incident, a 4-km gridded
surface climatology was sampled [39], containing energy release component (ERC-G in
the legacy NFDRS systems, ERC-Y in the new NFDRSv4); BTU/ft2), daily minimum
relative humidity (%), and wind speed (mph) measured at 1300 LST. Although ERC-G
refers to ERC calculated for that specific fuel type (fuel model G, conifer forest), it is
considered conventional to standardize the fuel model when evaluating the index across
large geographical areas [19,40]. This reduces any variability that may exist between fuel
types and allows analyses to focus on relative meteorological change over time.

2.2. Scoring Historical Percentiles

ERC, RH, and wind speed values obtained from the gridded climatology for the date
of each qualifying incident were normalized to site-specific values spanning 1999–2014
to yield percentiles. These percentiles were assigned a score according to the categories
listed in Table 2. These categories are arbitrary, and were chosen to facilitate systematic,
cumulative scoring when applied to a decision matrix. Of all the large fires included in this
analysis, very few occurred when the ERC was below the 50th percentile and RH above the
50th percentile, thus categorical division began at these percentiles to better tune matrix
scoring ability. The sum of each category represented the total score for the incident, 15
being the most extreme. By individually scoring each parameter, we provided a method of
quantifying the total severity of a given set of meteorological conditions. The alignment
of high scores in all three categories represent the most extreme conditions favorable to
large rates of spread [33]. This method allows for the total score to reflect the severity of
each individual category. For example, if RH and ERC both score a 5 and wind speed
scores a 2, the total score is still relatively high (12). Conversely, if ERC and RH are both
moderate at 3 and 3 and wind speed is high at 4, the total score is 10. Similar methods
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are currently being used operationally to score wind speed and RH criteria against each
other by some WFOs [41]. The datasets used in this work did not reveal any obvious
mathematical thresholds, and the behavior of large wildfires appeared to be ultimately
stochastic throughout the analysis. The design of arbitrary categories to rank incidents
objectively was deemed the best way to compare events and meet the goal of developing a
methodology capable of forecasting the likelihood of extreme fire behavior.

Table 2. Categorical scores for percentiles of ERC, RH, and wind speed.

ERC Percentile RH Percentile Wind Percentile Score

0–50th 100–51st 0

50–59th 50–41st 0–20th 1

60–69th 40–31st 20–40th 2

70–79th 30–21st 40–60th 3

80–89th 20–11th 60–80th 4

>90th <11th >80th 5

2.3. Comparison to Observational Data

To test the reliability of the scoring methodology using observational data, a geograph-
ically diverse sample of 55 remote automatic weather stations (RAWS) were selected from
the Western Regional Climate Center RAWS USA Climate Archive (https://raws.dri.edu
accessed on 18 March 2023). Hourly observations were collected for the period of record.
The maximum observed wind speed, gust speed, and minimum observed RH were ex-
tracted for each 24-hr period. RAWS wind is measured at 20-feet (6-m). RAWS gust speed
is the instantaneous speed of the wind during that hour, while the standard wind speed
measurement is a ten-minute average [42]. Maximum gust speed measurements were
preferred over wind speed after it was observed in both gridded and hourly observations
that wind speeds rarely approached the criterion value listed for each FWZ. RFW wind
criteria exceeded the 90th percentile more than 95% of the time in both gridded and hourly
datasets. For gust observations, however, RFW criteria had a median percentile value of 68.
Gust observations also approached or exceeded criteria values more frequently, suggesting
that gust speed measurements may have been the original point of reference when existing
criteria were established. Gust observations were quality controlled by excluding values
greater than three times the 80th percentile of all station measurements for the period of
record [43]. By selecting the maximum hourly gust observation for each 24-hr period, we
negated any potential weakness from using gridded wind speeds calculated at 1300 LST.
Existing RFW warning criteria for each FWZ were then transformed into percentiles using
RAWS gust speed and RH observations and scored via the categories listed in Table 2. As
mentioned above, no standardized integration of fuels information is currently utilized for
RFWs, therefore ERC observations from RAWS were unable to be compared to an existing
criterion. The recommended inclusion of ERC percentiles in RFW criteria is intended to
adequately address the fuels component.

2.4. Application to Previously Issued Warnings

To further validate the use of percentile scores, a dataset of all 2020 RFWs issued in a
geographically diverse sample of 20 states were collected from the Iowa State University
Iowa Environmental Mesonet archive of NWS warning products (https://mesonet.agron.
iastate.edu/vtec/search.php#byugc/MTZ067 accessed on 18 March 2023) (see Table 1). A
total of 5195 RFWs were retrieved. For RFWs that spanned more than two days, the median
day was selected. For RFWs spanning only two days, the date before the expiration date
was used if the warning expired before 1300 LST. If the warning expired after 1300 LST, the
expiration date was used. This was done to capture the exact date accompanying optimal
burning conditions for which the warning was likely issued. To obtain meteorological

https://raws.dri.edu
https://mesonet.agron.iastate.edu/vtec/search.php#byugc/MTZ067
https://mesonet.agron.iastate.edu/vtec/search.php#byugc/MTZ067
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information corresponding to each warning, a geographical reference location for each FWZ
was chosen (in order of preference) from a RAWS location or the location of a previously
documented large fire. RAWS locations are intended to be representative of the entire
FWZ [42]. RFWs were not tested if they occurred in a FWZ where neither RAWS nor large
fire information was available. A final sample of 3622 RFW locations was extracted from
gridded values of ERC, RH, and wind speed datasets spanning 1999–2014 to match the
large fire sample period. Due to the size and scope of this analysis, 1300 LST gridded
wind speeds were utilized as a substitute for gust speeds despite their relatively weak
correlation to observations [39] (p. 33). Since the percentiles calculated are relative only to
other gridded values, the local severity of wind speed values was likely preserved. Relative
proportionality between wind speed and gust speed has been previously demonstrated [44].
ERC, RH, and wind speed values corresponding to each RFW then were converted to
percentiles and a score assigned to each.

3. Results
3.1. Individual Parameter Scores from Large Fire Occurrence

ERC, RH, and wind speed scores of 4 or greater (refer to Table 2) consisted of 69%,
62%, and 51%, respectively, of all large fire occurrences where the maximum rate of spread
exceeded statewide breakpoints. These results are similar to Clark [10], where RFWs
coinciding with ERC values above the 90th percentile exhibited superior skill in predicting
large fire days, as well as work done by Lindley [45] where 2-m relative humidity and
20-foot (6-m) wind speed met RFW criteria in 64% of large fires on the southern great plains
from 2006–2010.

Figure 3 demonstrates a strong likelihood for larger rates of spread as the percentile
increased (in the case of ERC) or decreased (in the case of RH). This example consists
of large fires exceeding the statewide ROS breakpoint in Idaho; other states (not shown)
demonstrate similar results. It is worth mentioning that this pattern is not linear; low rates
of spread are still common in the presence of extreme conditions, perhaps a due to the
stochastic nature of fire, but also potentially a result of human action such as aggressive
initial attack response. While most large fires occurred during severe conditions, there were
still outliers occurring at near average conditions even above breakpoint rates of spread.
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A relationship of wind speed percentiles with increasing rates of spread is visually
apparent in states with predominant fuel types more susceptible to wind driven fire (e.g.,
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grass fuel, Figure 4), and less apparent in states where timber constitutes the primary fuel
type (Figure 5). Preliminary observation supports this assumption, as the tenth percentile
wind speed for Oklahoma and Oregon are almost identical (0.94/1.02 m s −1; 2.1/2.3 mph),
though wind speeds in the 0–20th percentile in Oregon depict a variety of rates of spread.
Conversely, wind speeds in the 0–20th percentile in Oklahoma depict very low rates of
spread. Above the ROS breakpoint wind percentiles Oklahoma and Oregon again appear
to have almost identical wind speeds (2.8/3.0 m s −1: 6.2/6.7 mph) but drastically different
rates of spread resulting from such. Rates of spread are also generally higher in Oregon, as
the maximum daily rate of spread breakpoint is 49,500 hectares compared to 5000 hectares
in Oklahoma.
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Additional analysis concerning the frequency of agreement between ERC and RH
percentiles demonstrated that ERC and RH scores agreed 50% of the time throughout
all sampled incidents, ERC and wind speed 20%, and wind speed and RH 23%. This is
reasonable given the incorporation of RH into the calculation of ERC [46], though it is worth
noting a lack of agreement 50% of the time, demonstrating independence between RH and
ERC (i.e., cases with high ERC but low RH scores which still result in increased rates of
spread and vice versa). Occasionally incidents occurred at very low scores for one or more
variables (i.e., RH percentiles above 40, wind percentiles below 20, etc.). These outliers
were not excluded from the analysis to highlight where fire behavior did not perfectly align
with weather/fuel severity given the occasionally stochastic nature of wildfires. Notably,
72% of the time ERC and RH scores agreed both variable scores were 5, demonstrating
strengthening alignment as conditions become more severe.

3.2. Total Scores from Large Fire Occurrence

Within the entire dataset (684 qualifying), 463 incidents (68%) obtained a total score
of 11 or greater. The frequency of each score is shown in Figure 6. The tendency for
higher scores as rate of spread percentile increases demonstrates the ability of the scoring
methodology to accurately represent increasingly extreme fire behavior.
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3.3. Introduction of a Two-Step Decision Matrix

The resulting total scores are combined into a two-step decision matrix (Figure 7).
Parameters may be individually scored and combined in any order (reference Table 2). Any
combination is valid to achieve the same result. Here ERC and RH percentiles are scored
together first, then compared to wind percentiles. Displaying the scoring methodology
in matrix format provides a simplified reference tool for forecasters and easily identifies
conditions warranting a RFW issuance. WFOs may adopt this format and replace each
percentile category with corresponding actual values of ERC, windspeed, and RH, allowing
for quick reference during daily operations. It is recommended that the threshold for
considering a warning is placed at a score of 11, clearly corresponding to the increase in
frequency of large fires with high rates of spread.
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3.4. Current RFW Criteria Scores Using Observational Data

Using hourly data gathered from RAWS stations, RH, and gust speed values meeting
current RFW criteria were scored using the same method, resulting in an average score of
3 for RH criteria and 4 for wind criteria. This results in an average combined score of 7,
and under worst case scenario ERC conditions (5) the threshold for a RFW would presently
sit at total score of 12. Note that the preceding analysis of large fire incidents relied upon
gridded data for wind speed; here RAWS hourly observations of gust speed are substituted
for a more accurate comparison to actual criteria values. There was some regional variation
in how criteria scored; for example, RFW criteria for RH hover around the 50th percentile in
the Great Basin but are under the 10th percentile in New York. RFW criteria in Montana and
Washington were below the 50th percentile gust speed according to the sampled stations
(8 total). These results allude to the possibility that this new methodology may be more
strict than existing RFW criteria, which could eliminate over forecasting (which has been a
concern for some fire management agencies) while still allowing some amount of forecaster
discretion given threshold scores.

RH observations from RAWS were generally higher than gridded values, indicating
observed conditions may be less severe than implied by gridded data. Wind speed obser-
vations from RAWS mean wind velocity were also generally higher than gridded values,
but substantially lower than gust speed measurements, indicating that by selecting gust
speed, the analysis focused on the worst-case scenario. As previously mentioned, scoring
RH and wind speed criteria against each other is a current operational practice of some
WFOs. Where this was observed, relative agreement between existing criteria and our
proposed methodology was commonly found. In cases where scores did not agree with
existing criteria, the method described herein favored a slightly stricter approach.

3.5. Scoring of Previous RFWs

Testing this methodology with RFWs issued in sampled states throughout 2020 re-
vealed congruent results (see Figure 8). ERC, RH, and wind scores of 4 or greater consisted
of 85%, 78%, and 78%, respectively, of all situations where RFWs were issued. In 83% of
instances, the score of a RFW was greater than or equal to 11, implying that this method
would agree with a large majority of current RFW criteria.
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4. Discussion
4.1. Expanding Current Warning Messaging

Currently, the NWS may issue FWWs prior to issuing RWFs, the latter is often a
chronological progression of the former; however, forthcoming work done by co-author T.
Wall demonstrates that fire management does not always successfully distinguish between
the two products and instead views FWWs as less severe versions of RFWs. This presents an
opportunity to replace the current FWW/RFW products with a two-tiered warning system
that is better able to communicate severity information to fire managers. Further assessment
is needed to determine if changes in FWW and RFW terminology are warranted. This
would be especially prudent to consider as part of any matrix integration into operations.
Conditions escalating to a score of 13, 14, or 15 should be considered as the more extreme
conditions, and therefore a second category of warning with different language may be
appropriate. It would be appropriate to communicate the historical severity of RFWs when
approaching extreme percentiles, such as for issuance of a particularly dangerous situation.
It may also be helpful to consider issuing RFWs for larger scale meteorological events rather
than specific windows of time. Though these conditions are obviously peaking in severity
for limited amounts of time and the understanding and perception from fire management
may be more actionable if more detailed meteorological background conditions are cited in
warning messaging. There is also evidence to suggest that the amount of time that warning
conditions persist has little impact on the likelihood of fire ignition [45], implying that RFW
criteria with a minimum duration may not be necessary.

4.2. The Inclusion of Uncertainty Information

The literature surrounding severe weather warnings in general demonstrates a sub-
stantial benefit from including uncertainty information, especially when forecasts surround
high impact events or are targeted at sophisticated user groups [47,48]. Emergency man-
agers often understand forecast uncertainty [49], and directly benefit from added qualitative
information [50]. Brown and Murphy [51] specifically addressed fire weather forecasts,
concluding that uncertainty information was necessary for fire managers to make rational
decisions. It is therefore reasonable to assume RFWs could be improved by the addition
of uncertainty information as well as the communication of the relative severity of the
warning. Our proposed method would allow for RFWs to be comparatively ranked and
severity easily identified, as well as mitigate any opportunities for heuristics or experience
to impact the forecast [52].
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4.3. Limitations

While the inclusion of a standardized fuel dryness criteria is necessary, some prac-
titioners may be concerned that ERC-G(Y) is not representative of local conditions and,
thus, cannot adequately proxy all fuel types. However, as noted earlier, ERC-G(Y) is a
commonly used indicator for many applications. The use of percentiles overcomes the
large variation of ERC magnitude in relation to fire occurrence across the country. This
analysis utilized ERC percentiles derived from gridded data standardized to fuel model G
(as per convention).

There are known limitations to the accuracy of gridded data with respect to its ability
to capture micro-climates [39]. This may have impacted the overall scores of large fires
presented herein; however, preliminary assessment with RAWS observations suggests that
this methodology would result in less RFWs than initially suspected with use of gridded
data, as most existing criteria scored higher within the gridded dataset used here. This
could shift concern away from false positives but may require local WFO adjustments
in warning thresholds if extreme fire behavior events are consistently being overlooked.
Limited work was performed regarding the statistics of overall score occurrence outside
of large fire incidents or RFW issuance, and while comparisons to current criteria do not
appear to imply continued or increased over forecasting, no definitive frequency analysis
currently demonstrates otherwise.

5. Conclusions

RFWs are a valuable tool for fire management. The ability to accurately forecast the
potential occurrence of extreme fire behavior will expose fire practitioners to less risk [35],
allow for better strategic planning and resource allocation by fire management [37], and
potentially affect decisions heavily impacting the public [53]. Current RFW criteria are
nationally inconsistent and often lack a formal integration of fuels information. These
issues pose potential problems with issuance consistency and relevancy, as well as limiting
forecasters’ ability to accurately judge historical severity. Here, we have developed a new
methodology for RFW criteria based off documented occurrences of extreme fire behavior,
specifically rates of spread above the statewide 80th percentile, as available from the ICS-
209 database. Percentile analysis of each incident was made possible by the availability of
a high-resolution gridded surface climatology. Categories of ERC, RH, and wind speed
were assigned a score of 1 to 5, and the additive combination of all three scores provided
for a final numerical score ranging from 0 to 15. This score given in a decision matrix form
indicates the extremity of conditions for issuing a RFW and FWW.

Care was taken to gauge how current RFW criteria would score in the matrix from
a select sample of FWZs by extracting and scoring RFW criteria percentiles from hourly
RAWS observations. Several forecasting matrices currently being used by WFOs were also
examined by comparing RFW criteria to their corresponding historical percentile. Though
more work is needed to examine the frequency and distribution of RFWs under this new
method in relation to current operational forecasts, it is not expected to be radically different
from present issuance and may err on the strict side of some WFOs forecasting practices.

Our project introduces a methodology for RFW issuance guidance for potential use by
the National Weather Service. As such, quantitative verification was not performed such as
that carried out by Clark et al. [10] as this would be more of a specific forecast issuance ex-
ercise. However, it is of interest to compare this new methodology with current operations.
RFWs issued in 2020 were analyzed using the same method, demonstrating a marginal
agreement of current criteria with the new proposed method despite a lack of national
standardization. This suggests that the application of this method would cause minimum
disruption to current forecasting practices once the details of integrating historical per-
centiles into operations were resolved. By utilizing the proposed methodology, forecasters
would benefit from the ability to compare historical percentiles and more accurately judge
severity, as well as being able to communicate this information to fire managers.
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5.1. Summary of Results

1. A standardized methodology was used to create a two-step decision matrix that
condenses meteorological information into numerical thresholds demonstrated to
correspond with higher likelihoods of extreme fire behavior.

2. ERC, RH, and wind speed scores of 4 or greater consisted of 69%, 62%, and 51%,
respectively, of all large fire occurrences where the maximum rate of spread exceeded
the statewide breakpoint.

3. More than two thirds (68%) of large fires produced a matrix score of 11 or higher.
4. A total of 83% of RFWs issued in 2020 produced a matrix score of 11 or higher.
5. As rate of spread increases, the likelihood of a higher matrix score also increases.

5.2. Summary of Recommendations

1. NWS should nationally utilize a decision matrix approach for determining a RFW
and FWW.

2. Energy release component from NFDRS should be utilized as part of RFW criteria.
3. NWS WFOs should base RFW criteria on historical percentiles of ERC, RH, and wind

gust. These percentiles should be scored according to the categories depicted in
Table 2. Days exceeding a score of ≥11 should be considered as having elevated
potential for extreme fire behavior.

4. Numerical percentile values for these three elements would have to be calculated
from historical data for FWZs and made available in the operational environment.
However, similar with other NWS watches/warnings, RWW/RFW should be issued
based on polygon type boundaries versus FWZs.

5. In the context of hazard simplification, it is recommended to continue use of a two-
tiered (watch and warning with special provision for PDS) set of fire weather products
for clarity.

6. Descriptive information regarding historical and seasonal severity should be included
with each FWW/RFW.

7. WFOs should frequently and freely communicate with fire management in order to
ascertain forecast effectiveness and discuss potential impacts of the forecast.

8. This analysis focused exclusively on fire management as the intended audience. Since
FWW/RFWs are also being used by the public in some cases, further work is necessary
to determine appropriate messaging for public use.
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